Technic

使用python构建ARIMA模型进行预测分析的小说明:forecast函数

Autoregressive Integrated Moving Average model(ARIMA),即差分整合移动平均自回归模型,或称为整合移动平均自回归模型,是一种时间序列预测分析方法。今天我在实践过程中遇到一个小问题,后来看了官方文档才弄清楚,这里和大家分享一下。 首先分享三篇我觉得比较好并且容易上手的教程,其中包含源代码可以直接使用。第一篇是一个最简单的入门,是单步预测;第二篇可以进行多步预测;第三篇对于算法使用前的数据处理和分析进行了详细的介绍;第四篇也有相详尽的步骤和代码,并对数据进行了详细的分析,第五篇详细的介绍了从线性回归到AR、ARMA、ARIMA及GARCH等方法。 How to Create an ARIMA Model for Time Series Forecasting with Python How to Make Out-of-Sample Forecasts with ARIMA in Python Forecast a time series with ARIMA in Python A Guide to Time Series Forecasting with ARIMA in Python 3 Time Series Analysis (TSA) in Python – Linear Models […]

Continue Reading